In this database, the following information about F. graminearum can be found.

Database
ID
Platform
Short Description
GEO
GSE36638 NimbleGen Fusarium_tiling_300k_V1 Genome-wide expression profiling in a Fusarium graminearum lacking FgVelB, a velvet complex gene
GSE30545 Roche Nimblegen G.zeae 135K microarray Genome-wide expression profiling reveals transcriptional reprogramming in Fusarium graminearum by FgV1-DK21 virus infection
GSE24636 Fusarium graminearum 4×44k Effect of salicylic acid on Fusarium graminearum, the major causal agent of fusarium head blight in wheat
GSE30892 Fusarium graminearum 4×44k Tri6 is a global transcription regulator in the phytopathogen Fusarium graminearum
GSE29973 Fusarium graminearum febit in situ oligonucleotide array Transcriptional responses of Fusarium graminearum to plant cell wall substrates
GSE25114 021301-MLU Fusarium graminearum 8×15K v1.0 Genome-wide expression profiling of Fusarium graminearum in response to azole fungicide treatmen
PLEXdb
FG1 F. graminearum Affymetrix GeneChip Fusarium transcript detection on Morex barley spikes using Fusarium Affy GeneChips
FG2 F. graminearum Affymetrix GeneChip Expression Profiles in Carbon and Nitrogen Starvation Conditions
FG3 F. graminearum Affymetrix GeneChip Cross-species hybridization
FG4 F. graminearum Affymetrix GeneChip Fusarium/Barley RNA dilution
FG5 F. graminearum Affymetrix GeneChip Fusarium transcript detection during in vitro sexual development using Fusarium Affy GeneChips
FG6 F. graminearum Affymetrix GeneChip Transcript detection during in vitro sexual development of Fusarium Cch1 calcium channel deletion mutant using Fusarium Affy GeneChips
FG7 F. graminearum Affymetrix GeneChip Fusarium gene expression profiles during conidia germination stages
FG10 F. graminearum Affymetrix GeneChip Response to trichodiene treatment in Fusarium graminearum
FG11 F. graminearum Affymetrix GeneChip Gene Regulation by Fusarium Transcription Factors Tri6 and Tri10
FG12 F. graminearum Affymetrix GeneChip Fusarium graminearum gene expression during crown rot of wheat
FG13 F. graminearum Affymetrix GeneChip The transcription factor FgStuAp influences spore development, pathogenicity and secondary metabolism in Fusarium graminearum
FG14 F. graminearum Affymetrix GeneChip DON induction media
FG15 F. graminearum Affymetrix GeneChip F. graminearum gene expression during wheat head blight
FG16 F. graminearum Affymetrix GeneChip Fusarium graminearum gene expression in wheat stems during infection
FG18 F. graminearum Affymetrix GeneChip Trichothecene synthesis in a Fusarium graminearum Fgp1 mutant
FG19 F. graminearum Affymetrix GeneChip Stage-specific expression patterns of Fusarium graminearum growing inside wheat coleoptiles with laser microdissection
NF1 F. graminearum Affymetrix GeneChip Wheat infection by a Fusarium graminearum Fgp1 mutant
NF6 F. graminearum Affymetrix GeneChip Gene expression during vegetative growth in complete liquid medium of Fusarium graminearum and Fusarium oxysporum and corresponding mutants in orthologous WOR1-like genes. (NineFungalArray_Fus_gra)
NF7 F. graminearum Affymetrix GeneChip Gene expression during vegetative growth in complete liquid medium of Fusarium graminearum and Fusarium oxysporum and corresponding mutants in orthologous WOR1-like genes (NineFungalArray_Fus_oxy)

Note that, in this database, the subcellular location, protein-protein interaction and parts of pathogenic genes were predicted as described in our prior works [1-3]. The gene information, functional annotation, promoter sequence and amino acid sequence were collected from FGDB database[4]. The domain composition of proteins was scanned with the InterProScan[5]. The known pathogenic genes were collected from the PHI-base database[6]. Transcription factors were obtained from [7]. The enzyme catalytic activity and pathway information of F. graminearum proteins were collected from KEGG database[8]. The orthologs of F. graminearum proteins were identified in 24 species by utilizing Inparanoid software[9], and the best hit(s) of each proteinin 4 public databases: NR[10], UniProt[11], COGs[12] and MEROPS[13], was obtained with BLAST[14].


References:

[1] Liu X, Tang WH, Zhao XM, Chen L. "A network approach to predict pathogenic genes for Fusarium graminearum", PLoS One 5(10): e13021, 2010.
[2] Sun C, Zhao XM, Tang W, Chen L. "FGsub: Fusarium graminearum protein subcellular localizations predicted from primary structures", BMC Syst Biol 4 (Suppl 2): S12, 2010.
[3] Zhao XM, Zhang XW, Tang WH, Chen L. "FPPI: Fusarium graminearum protein-protein interaction database", J Proteome Res 8(10): 4714-4721, 2009.
[4] Guldener U, Mannhaupt G, Munsterkotter M, Haase D, Oesterheld M, Stumpflen V, Mewes HW, Adam G. "FGDB: a comprehensive fungal genome resource on the plant pathogen Fusarium graminearum", Nucleic Acids Res 34: D456-458, 2006.
[5] Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R . "InterProScan: protein domains identifier", Nucleic Acids Res 33: W116-120, 2005.
[6] Winnenburg R, Baldwin TK, Urban M, Rawlings C, Kohler J, Hammond-Kosack KE. "PHI-base: a new database for pathogen host interactions", Nucleic Acids Res 34: D459-464, 2006.
[7] Ma LJ, et al. "Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium", Nature 464: 367-373, 2010.
[8] Kanehisa M. "The KEGG database", Novartis Found Symp 247: 91-101; discussion 101-103, 119-128, 244-152, 2002.
[9] Ostlund G, Schmitt T, Forslund K, Kostler T, Messina DN, Roopra S, Frings O, Sonnhammer EL. "InParanoid 7: new algorithms and tools for eukaryotic orthology analysis", Nucleic Acids Res 38: D196-203, 2010.
[10] Pruitt KD, Tatusova T, Maglott DR. "NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins", Nucleic Acids Res 33: D501-504, 2005.
[11] Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Natale DA, O'Donovan C, Redaschi N, Yeh LS. "UniProt: the Universal Protein knowledgebase", Nucleic Acids Res 32: D115-119, 2004.
[12] Tatusov RL, Koonin EV, Lipman DJ. "A genomic perspective on protein families", Science 278: 631-637, 1997.
[13] Rawlings ND, Barrett AJ. "MEROPS: the peptidase database", Nucleic Acids Res 27: 325-331, 1999.
[14] Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. "Basic local alignment search tool", J Mol Biol 215: 403-410, 1990.

Acknowledge:

EFG relies on many fine resources maintained elsewhere: KEGG, GEO, NR, UniProt, COGs, MEROPS, PHI-base ...and many others. Their input and support is gratefully acknowledged!